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Abstract—Heat transfer through a gray medium in a semi-infinite space bounded by a flat plate of a

constant temperature is analyzed using a linearized approximation when an external beam is imposed

through the semitransparent plate. The case is considered that the radiation field is in LTE and the

heat flux is zero. The results show that conductivity affects little the temperature distribution, which is

characteristic of radiation, except in a thin layer adjacent to the plate, when the order of magnitude of
heat transfer due to conduction is less than 0-1 times that due to radiation.

NOMENCLATURE

a,b, constants introduced in equation (22};
C,,C,, integral constants in equation (10);

E, (), the nth order exponential integral;

£ function introduced in equation (22);
f1.f2, fanctions introduced in equation (27);

F,,  radiative intensity of the beam divided by

do T04 N
h, arbitrary real positive number;
I, perturbation of radiative intensity, by which
the radiative intensity is expressed as
e T3l + 161 )x;
k, heat conductivity;
i, direction cosine of a ray in the 7 direction;
I, direction cosine of the beam in the ©
direction;

m, direction cosine of a ray in the direction
orthogonal to that of 7;

my,  direction cosine of the beam in the direction
orthogonal to that of z;

4, heat flux divided by 16¢T3;

gg, radiative heat flux divided by 1607Tg";

t, coefficient of transparency of the plate;

T, perturbation of temperature, by which the
temperature is expressed as Tp(1+T);

T5,  plate temperature;

To, valueof Tfort»1;

X, distance from the plate.
Greek symbols

&, absorption coefficient;

T, ratio of the magnitude of heat transfer due to
conduction and radiation [se¢ equation (5)];

a, the Stefan~Boltzmann constant;

T, optical depth, ax;

1, stretched coordinate introduced in
equation {15);

8, angle between the beam and the t axis,
cos ™ ,;

A,,  integral operator introduced in equation (9);
X,,» integraloperator introduced in equation (10},

Subscripts
0,1,2,..., the order of approximation.

Superscripts
R, quantity in the radiation region;
C, quantity in the conduction layer.

1. INTRODUCTION

ONE OF the main characters of the radiative heat
transfer different from those of the heat conduction is
shown in temperatore distribution in a steady one-
dimensional problem of heat transfer [1]. The tem-
perature changes gradually in a region away from a
solid boundary as if the heat transfer is diffusive. On
the other hand, the temperature changes rapidly in the
neighbourhood of the boundary. This layer adjacent
to the boundary is a transient layer where the radiation
field changes from an anisotropic field to an isotropic
field. The layer, which is called as the radiation layer,
has been investigated in radiation gas dynamics [2-5],
We call the region outside the radiation layer as the
asymptotic region.

In many works on radiation gas dynamics, the heat
conductivity of the gas is neglected [6] to simplify the
problem. The assumption is intuitively acceptable in
many cases, since effects due to conduction will be
restricted within a very thin layer adjacent to the
boundary like as a boundary layer if the heat con-
ductivity is very weak. The thickness of the layer will
be much thinner than that of the radiation layer. How-
ever, effects due to heat conduction on the heat transfer
in the radiation layer have not been precisely in-
vestigated.

If the radiation is dominant (i.e. weak conduction),
effects due to conduction will be restricted within a
very thin layer adjacent to the boundary, which we
call as the conduction layer. Therefore, conduction will
be safely neglected outside the layer. However, there
are two questions. One of them is that by what way
the temperature in the conduction layer matches with
that in the radiation layer. Another one is whether the
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temperature in the asymptotic region is really affected
by the conduction or not. On the other hand, if the
conduction is dominant (i.e. weak radiation), the radi-
ation will be neglected. Therefore the radiation layer
does not exist. Now there is a question: how strong
conduction may be admitted in comparison with the
radiation for the radiation layer to be remarkable?

The present problem has also a mathematical
interest. The reduced equation which governs the tem-
perature deviation from that in the asymptotic region
is a non-homogeneous singular integral equation [1],
if the conduction is neglected. The equation has a
special character that the non-homogeneous term is
no longer arbitrary [ 1]. The character will be originated
from the fact that the coefficients of the integral
equation will belong to its spector. When the con-
duction is considered, the coefficients are different from
those of the equation for pure radiation as shown in
Section 2. Therefore we will obtain a regular solution
which will tend to the solution for pure radiation in
the limit of weak conduction. Thus we can understand
the character of the equation for pure radiation.

To investigate the effect of conduction on radiative
heat transfer, we consider a simple problem as follows.
A gray radiating—conducting medium occupies a semi-
infinite space bounded by a semitransparent flat plate.
Through the plate, an external beam radiation is
imposed and a uniform plate temperature is given. The
radiation field is assumed to be in local thermodynamic
equilibrium. We consider the case that the heat transfer
is steady one-dimensional and the temperature is
uniform at a point far away from the plate.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

We study the problem stated above. We measure the
x coordinate from the plate. The case is considered
that the energy supplied by the beam is much smaller
than the energy transferred by conduction and
emission. Therefore, the basic equations are linearized.
They are expressed in non-dimensional variables as
follows;

dg
—=0 1
il 0y
_ r dT @
qd=dqg d’
qr = J 11dQ, 3
4n
dr 1
— = —|[——T 4
dr [1 47 :l’ @t
where
_ ok 5
T 166Tg ©)

*The integral symbol means integration over all solid
angles.

+We use the integrated radiative quantities which are the
quantities integrated over all frequency ranges, since we
assume the gray radiation. The index of refraction of the
medium is assumed to be unity.
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The boundary conditions are as follows. At the plate,
the temperature of the medium should coincide with

the plate temperature;
T0)=0. (6)

The external beam radiation is imposed through the
semitransparent plate;

10.01> 0) = = [Ré(1-b)otm—my) ~4]. ()

We consider the case that ¢ « 1. At a far point from
the plate, the temperature is uniform;

ar I
(&) @)oo

In this case, (T).., is a quantity which should be
determined.

Equation (4) with boundary conditions (7) and (8)
is formally integrated with respect to I. Substituting
this I'into equation (3), we obtain from equations (1)—(3)

d*T _ t
T—FW=Z;FI,C /lb"gEz(T)"‘At[T], (9)

where

ALT] s%r TOE (e —1])dr,
0

“ 1
E,(1)= f —e "dl
e
Equation (9) is integrated twice and reduced to
1l ¢
[T+X,[T]= —ZEF,,e“*/’»+§E4(r)+clz+cz, (10)
n

where

g

X[T] =4 j TOEs(t—t)de.

0

3. WEAK CONDUCTION
In this section we consider the case that the con-
duction is very weak compared with the radiation;
ie. I’ « 1. At first, we consider the solution T® which
changes in the length scale of T and expand it as follows;
T=TR=TR+THTR+T TR+ .... (11)*

Substituting the series into equation (9), we obtain

tF, t

TF-A[TF] = Ze ¥ —~E,(1), (12)
%4 8

TR~A[TE] =0, (13)
d2TR

TE-A[T] =7 (149

Equation (12) is the same as the equation for pure
radiation and has already been solved [1]. It is already
known [2] that the solution of equation (13) is zero.

*The parameter of the expansion is chosen as I'?, since
the thickness of the conduction layer is of order I'? as shown
in later.
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The results in [1] show that T*(0) # 0. The solution
T* does not satisfy the boundary condition (6). There-
fore we split the solution of the boundary value problem
into two: TR and T, which will express the conduction
layer.

In the conduction layer, the conductive term should
balance at least one term of the radiative terms. In
equation (9), it is suggested that the thickness of the
conduction layer is of the order of I'!. Thus we intro-

duce the coordinate stretching
n=T"4 (15)

as usually done in the boundary-layer theory. The
solution is expressed by

T = TR(t)+ T(n). (16)

Now we consider that # is of order unity. Thus the
solution is expanded in the series

'R
T=[Tf+ %R(O)]+F*[T1C+ng%g]+... . (1

Substituting the series into equation (9), we obtain

d*T1¢
W"—Toc =0, (18)
a7t
dn; -TE=0 (19)
Thus the solution is obtained as
T = — TR (0)e ", (20)
T =0, (21

when we consider the boundary condition (6). Con-
sequently effects due to weak heat conduction are really
restricted within the conduction layer. The matching
of the solution in the conduction layer and that outside
the layer is automatic.

4. MODERATE CONDUCTION
Now we consider that I" is arbitrary. In the asymp-
totic region, where ¢ > 1, it is easily shown from
equation (10) that 7 is, in general, a linear function
of 1. Therefore we introduce f by

th
T = —-2Fy(f+a+b1), 22
47

where a and b should be determined. The function f is
a function of t and will represent the solution in the
radiation layer. Therefore f decreases rapidly when 1
tends to infinity (faster than t =" for any h). Substituting
equation (22) into equation (10), we obtain

I'f+Xx[f]= e“/’h+%(a —2L>E4(‘c)
leb
—-éEs(T)— |:(F+%)a+i§- CZ:I
2 IZ

- [(I“+-_1;)b +% Cl}. 23)
b
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In the present problem, we require the boundary con-
ditions (6) and (8), which are reduced to

f(o) = —aq,
df _
(a>ﬁw +b=0.

Since f decreases rapidly as 7 increases, df /dt decreases
rapidly too. Therefore b = 0, C, = 0 and

24

25

2
C,= —ﬁ’—(l“+%)a. (26)
4n
When I' = 0 (pure radiation), it is already known [1]
that equation (23) has a special character: the coefficient
of E,(7) should be determined simultaneously with the
solution. Thus a is automatically determined. When I’
has any positive non-zero value, the boundary con-
dition (24) should be satisfied in addition to equation
(23). Therefore a positive value of I will give a regular
solution of the singular integral equation. Then we
assume the form of f as
.4
f=f1+%<a—ﬁ)fz, 27)
b1
where f, and f,, respectively, should satisfy the
equations

Th+X[fi]=e"" (28)
Tf;+X.[f2] = Ea(0). (29)

Substituting equation (27) into equation (24), we finally

obtain
T

0)——— f2(0
10~ 55 0 )
aqa= --——mm-moam--——
1+ f2(0)/2
The values of f, and f, are evaluated approximately
as follows. We assume the form of f; and f; as
N
fi= Y auE\1), i=1 or 2 (31
n=2
since f is a rapidly decreasing function of  so that
f1and f, are also rapidly decreasing functions, where
a;,’s are constants which should be determined. Sub-
stituting equation (31) into equations (28) and (29),
multiplying them Ejt); j=2,..., N and integrating
them in the range 0 < 7 < o0, we obtain two sets of

6

- -
B=cos™(,

Y

)

o B4 2 3
T
FiG. 1. fiand f; for ' = 0-1.
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F1G. 4. Temperature distribution for [, = 1. The dotted

curves show the curves for I' = 0 slided to give the same

asymptotic values. The chain lines show the asymptotic
values.

linear algebraic equations with respect to a;,’s (i = 1 or
2). Solving the sets of equations, we obtain finally f;
and f5. In actval calculation, we set N =15. The
results are shown in Figs. 1-3. In these figures, the
solid curves show f1, the dotted curves f, and the fine
curves f, for § = 54°.

To check the approximation of the numerical cal-
culation, we evaluate the relative error of the moment
with the weight function 1. The results show that the

oI I I |
0001 [eXe]] [e}] ! [[e3

r

FIG. 5. Asymptotic value of the temperature for i, = 1. The
chain line shows the value for I' = 0.

error is less than a few percent when I' > 0-001 and
0° < cos !, < 72°. When I = 0, the error becomes,
of course, comparable to the calculated main value.

Typical distributions of the temperature* are shown
in Fig. 4 for various values of I" when [, =1.
When I = 0-001, the conduction layer is clearly shown.
The radiation layer is remarkable when the order of
the value of T is less than 0-1. When T =10, the
conduction is dominant so that the temperature is
almost flat. The asymptotic value of T, T, are shown
in Fig. 5 for I, = 1. In Section 3, it is shown that the
asymptotic value does not change, if the conduction
is very weak. We need, however, a very small value of
I" for the statement to be valid. Consequently, the
radiation layer, which shows one of the main characters
of radiative heat transfer, is remarkable when the order
of the value of I is less than 01 even if the medium
has the heat conductivity.
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TRANSFERT DE CHALEUR STATIONNAIRE UNIDIMENSIONNEL
DANS UN MILIEU PROPAGATEUR DU RAYONNEMENT

Résumé—On analyse le transfert de chaleur a travers un milieu gris dans un espace semi-infini limité par

une plaque plane a température constante utilisant une approximation linéarisée dans le cas ou un

rayonnement extérieur est imposé 4 travers la plaque semi-transparente. On considére que le champ de

rayonnement est en équilibre thermodynamique local et que le flux de chaleur est nul. Les résultats

montrent que la conductivité n’affecte que peu la distribution de température qui est caractéristique du

rayonnement excepté dans une fine couche adjacente a la plaque, lorsque 'ordre de grandeur du
transfert thermique di a la conduction est inférieur a 0,1 fois celui dd au rayonnement.

STATIONARE EINDIMENSIONALE WARMEUBERTRAGUNG DURCH
EIN STRAHLEND-LEITENDES MEDIUM

Zusammenfassung —Wirmeiibertragung durch ein graues Medium in einem halbunendlichen Raum, der
durch eine flache Platte mit konstanter Temperatur begrenzt ist, wird durch eine linearisierende Niherung
mittels eines von auBen auf die halbdurchlissige Platte einfallenden Strahls analysiert. Es wird der Fall
untersucht, daf3 das Strahlungsfeld im LTE und daB der WirmefluB gleich Null ist. Die Ergebnisse
zeigen, daB die Leitfihigkeit die Temperaturverteilung wenig beeinfluBt, die charakteristisch fiir die
Strahlung auBer in der Grenzschicht an der Platte ist, wenn die GroBenordnung der Wirmeiibertragung,
die durch die Wirmeleitung hervogerufen wird, weniger als 0,1 mal derjenigen ist, die durch Strahlung
hervorgerufen wird.

CTALUIMOHAPHbIV OJHOMEPHBIN TEIUIOIIEPEHOC YEPE3
NPOBOAAIYIO U3NYYEHHE CPEOY

Amoranns — C HCNONIL30BAHHEM JTHHEWHOTO NPHOIMKEHHA HCCTIENYETCH TEINIONIEPEHOC YEPES CEPYIO
cpeny B nonyGeckOHEMHOM TIPOCTPAHCTBE, OrPAHHYEHHOM IUIOCKOM IUIACTHHOM C MOCTOSHHOM
TeMmnepaTypoil, KOraa Ha MONYNpo3payHyl IJIACTHHY HAJAraeTCs BHEWHHIH (cBeTOBOM) nyu. Pac-
CMAaTpHBAETCA Clly4ail, KOrZa Moje HIIyYeHHs HAXOOMTCA B COCTOSHHM TEPMOMHHAMHUYECKOTO
PaBHOBECHSA, A TEIIOBOM MOTOK — HYJEBOi.

Pe3ynbTaTbl MOKa3bIBAIOT, YTO NMPOBOAMMOCTL OKa3biBaeT HEGONBLIOE BIHSHEE HA pachpenese-
HHE TEMIEPaTypbl, ABNAIOLICECS XaPAKTEPUCTHKON W3IIYYEHHS, 33 MCK/IIOYEHHEM TOHKOTO Cllos,
MPKJIEraloUIEro K MIACTHHE, KOTAa BEJIHYHHA NepeHoca TEMA 3a CYeT TEMJIoNpoBOAHOCTH B 0,1 pasa

MeHbLlIe, YeM MepeHOoca Terla 3a CYET U3JIYYEHHS,
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