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Abstract-Heat transfer through a gray medium in a semi-infinite space bounded by a flat plate of a 
constant temperature is analyzed using a linearized approximation when an external beam is imposed 
through the semitransparent plate. The case is considered that the radiation field is in LTE and the 
heat flux is zero. The results show that conductivity affects little the temperature distribution, which is 
characteristic of radiation, except in a thin layer adjacent to the plate, when the order of magnitude of 

heat transfer due to conduction is less than O-1 times that due to radiation. 

the nth order exponential integral; 
function introduced in equation (22); 
functions introduced in equation (27); 
radiative intensity of the beam divided by 
4aTd’ ; 

arbitrary real positive number; 
perturbation of radiative intensity, by which 
the radiative intensity is expressed as 
cl-T,“{1 + 161)/7r; 
heat ~ondu~tiv~t y ; 
direction cosine of a ray in the ‘5 direction; 
direction cosine of the beam in the z 
direction; 
direction cosine of a ray in the direction 
orthogonal to that of 7s; 
direction cosine of the beam in the direction 
orthogonal to that of Z; 
heat flux divided by 16aT: ; 
radiative heat flux divided by lticrT$; 
coefficient of transparency of the plate ; 
perturbation of temperature, by which the 
temperature is expressed as &(I f- T); 
plate temperature; 
valueofTforr>>l; 
distance from the plate. 

Greek symbols 

a, absorption coefI?cient; 

r, ratio of the magnitude of heat transfer due to 
conduction and radiation [see equation (S)]; 

0.4 the Stefan-Boltzmann constant; 
T, optical depth, ax; 

9, stretched coordinate introduocd in 
equation (15); 

8, angle between the beam and the T axis, 
cos-l &; 

A,, integraf operator introduced in equation (4); 
XC, integraloperator introduced in equation (10). 

Subscripts 

91,2,..., the order of a~prox~ation. 

Superscripts 

R, quantity in the radiation region; 

c, quantity in the conduction layer. 

1. PJTRODUCTION 

ONE OF the main characters of the radiative heat 
transfer different from those of the heat conduction is 
shown in temperature distribution in a steady one- 
dimensional problem af heat transfer El]. The tem- 
perature changes gradually in a region away from a 
solid boundary as if the heat transfer is diiFusive. On 
the other hand, the temperature changes rapidly in the 
neighbourhood of the boundary. This layer adjacent 
to the boundary is a transient layer where the radiation 
field changes from an anisotropic field to an isotropic 
field. The layer, which is called as the radiation layer, 
has been investigated in radiation gas dynamics [2-51. 
We call the region outside the radiation layer as the 
asymptotic regian. 

In many works an radiation gas dynamics, the heat 
conductivity of the gas is neglected [6] to simplify the 
problem. The assumption is intuitively acceptable in 
many cases since effects due to conduction will be 
restricted within a very thin Layer adjacent to the 
boundary like as a boundary layer if the heat con- 
ductivity is very weak. The thickness af the layer wifl 
be much thinner than that of the radiation layer. How- 
ever, effects due to heat conduction on the heat transfer 
in the radiation layer have not been precisely in- 
vestigated. 

If the radiation is dominant (i.e. weak conduction), 
effects due to conduction will be restricted within a 
very thin layer adjacent to the boundary, which we 
call as the conduction layer. Therefore, conduction will 
be safely neglected outside the layer. However, there 
are two questions. One of them is that by what way 
the temperature in the conduction layer matches with 
that in the radiation layer. Another one is whether the 
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temperature in the asymptotic region is really affected 
by the conduction or not. On the other hand, if the 
conduction is dominant (i.e. weak radiation), the radi- 
ation will be neglected. Therefore the radiation layer 

does not exist. Now there is a question: how strong 
conduction may be admitted in comparison with the 
radiation for the radiation layer to be remarkable? 

The present problem has also a mathematical 

interest. The reduced equation which governs the tem- 

perature deviation from that in the asymptotic region 
is a non-homogeneous singular integral equation [l], 

if the conduction is neglected. The equation has a 
special character that the non-homogeneous term is 

no longer arbitrary [l]. The character will be originated 

from the fact that the coefficients of the integral 
equation will belong to its Spector. When the con- 
duction is considered, the coefficients are different from 
those of the equation for pure radiation as shown in 

Section 2. Therefore we will obtain a regular solution 
which will tend to the solution for pure radiation in 
the limit of weak conduction. Thus we can understand 

the character of the equation for pure radiation. 

To investigate the effect of conduction on radiative 
heat transfer, we consider a simple problem as follows. 
A gray radiating-conducting medium occupies a semi- 
infinite space bounded by a semitransparent flat plate. 
Through the plate, an external beam radiation is 
imposed and a uniform plate temperature is given. The 

radiation field is assumed to be in local thermodynamic 
equilibrium. We consider the case that the heat transfer 

is steady one-dimensional and the temperature is 
uniform at a point far away from the plate. 

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

We study the problem stated above. We measure the 
x coordinate from the plate. The case is considered 

that the energy supplied by the beam is much smaller 
than the energy transferred by conduction and 
emission. Therefore, the basic equations are linearized. 
They are expressed in non-dimensional variables as 
follows; 

dq - 0 

z- ’ 

q=qR-r g, 

qR = s IIda, (3)* 
4n 

where 

(W 

*The integral symbol means integration over all solid 
angles. 

tWe use the integrated radiative quantities which are the 

Equation (12) is the same as the equation for pure 
radiation and has already been solved [l]. It is already 
known [Z] that the solution of equation (13) is zero. 

quantities integrated over all frequency ranges, since we *The parameter of the expansion is chosen as l-f, since 
assume the gray radiation. The index of refraction of the the thickness of the conduction layer is of order P as shown 
medium is assumed to be unity. in later. 

The boundary conditions are as follows. At the plate, 

the temperature of the medium should coincide with 

the plate temperature; 

T(0) = 0. (6) 

The external beam radiation is imposed through the 
semitransparent plate; 

I(0,1>0)=~[F,6(1-&$-m.+~]. (7) 

We consider the case that t << 1. At a far point from 

the plate, the temperature is uniform ; 

(8) 

In this case, (T),,, is a quantity which should be 
determined. 

Equation (4) with boundary conditions (7) and (8) 

is formally integrated with respect to 1. Substituting 
this I into equation (3), we obtain from equations (l)-(3) 

where 

a: A,[T] =f 
s 

%E,(I7--tl)df, 
0 

E,(t) = 
I 

a, 1 

1 Fidi. 

Equation (9) is integrated twice and reduced to 

TT+X,[T] = -~~be-f~fb+~E,(ri+C17+C2, (10) 

where 

s 

oc 
X,[T] ZZ 3 T(t)E,(12--tl)dt. 

0 

3. WEAK CONDUCTION 

In this section we consider the case that the con- 

duction is very weak compared with the radiation; 
i.e. r CC 1. At first, we consider the solution TR which 
changes in the length scale of z and expand it as follows; 

T= TR= T,R+r+T;+rT;+.... (Ill* 

Substituting the series into equation (9), we obtain 

T:-A,[T:] =o, 

d’ToR 
T~R-A,[T:] =dsZ. 
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The results in [l] show that T’(0) # 0. The solution 
TR does not satisfy the boundary condition (6). There- 
fore we split the solution of the boundary value problem 
into two: TR and TC, which will express the conduction 
layer. 

In the conduction layer, the conductive term should 
balance at least one term of the radiative terms. In 
equation (9), it is suggested that the thickness of the 
conduction layer is of the order of I*. Thus we intro- 
duce the coordinate stretching 

‘I = I?-%, (15) 

as usually done in the boundary-layer theory. The 
solution is expressed by 

T = TR(7) + T’(q). (16) 

Now we consider that rl is of order unity. Thus the 
solution is. expanded in the series 

T= [T,C+T,R(O)]+I* 
dT:(O) 

T,C+V~ 1 +... . (17) 

Substituting the series into equation (9), we obtain 

d2Toc 
P-T; = 0, 
dv2 

(18) 

d2 TIC 
p-T,c=O. 
dr12 

Thus the solution is obtained as 

T: = - TE(0)emq, (20) 

T: = 0, (21) 

when we consider the boundary condition (6). Con- 
sequently effects due to weak heat conduction are really 
restricted within the conduction layer. The matching 
of the solution in the conduction layer and that outside 
the layer is automatic. 

4. MODERATE CONDUCTION 

Now we consider that I is arbitrary. In the asymp- 
totic region, where r >> 1, it is easily shown from 
equation (10) that i’ is, in general, a linear function 
of r. Therefore we introducefby 

it 
T = -&+o+br), (22) 

where a and b should be determined. The function f is 
a function of r and will represent the solution in the 
radiation layer. Therefore f decreases rapidly when 7 

tends to infinity (faster than t-* for any h). Substituting 
equation (22) into equation (lo), we obtain 

rf+x,[f] = e-r/‘b+$ 

(23) 

In the present problem, we require the boundary con- 
ditions (6) and (8), which are reduced to 

f(o) = -a, (24) 

df 0 z r+m 

+b=O. (25) 

Since f decreases rapidly as 7 increases, df/dr decreases 
rapidly too. Therefore b = 0, Cl = 0 and 

c2 = -z(r++)a. (26) 

When I = 0 (pure radiation), it is already known [l] 
that equation (23) has a special character: the coefficient 
of ,547) should be determined simultaneously with the 
solution. Thus a is automatically determined. When I 
has any positive non-zero value, the boundary con- 
dition (24) should be satisfied in addition to equation 
(23). Therefore a positive value of I will give a regular 
solution of the singular integral equation. Then we 
assume the form off as 

f2, 

where fi and f2, respectively, should satisfy the 
equations 

rfi +X,[ fi] = eerilb 

rf2+x[f2] = ~47). 

(28) 

(29) 

Substituting equation (27) into equation (24), we finally 
obtain 

fi(O) -& fz(O) 

a= - 
1+f2;o;2 . 

(30) 

The values of fi and f2 are evaluated approximately 
as follows. We assume the form of fi and f2 as 

fi = jz QL(7), i = 1 or 2, (31) 

since f is a rapidly decreasing function of 7 so that 
fi and f2 are also rapidly decreasing functions, where 
ain’s are constants which should be determined. Sub- 
stituting equation (31) into equations (28) and (29), 
multiplying them E,(r); j = 2,. . . , N and integrating 
them in the range 0 < 7 < co, we obtain two sets of 

l-=0.1 

4 

2 

0 

FIG. 1. fi and f2 for r = 0.1. 
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FIG. 2. f’ andf, for f = 1. 

0 r; I 2 3 

T 

FIG. 3. fr andf, for f = 10 

0 2 3 
T 

FIG. 4. Temperature distribution for Ib = 1. The dotted 
curves show the curves for r = 0 slided to give the same 
asymptotic values. The chain lines show the asymptotic 

values. 

linear algebraic equations with respect to ai:S (i = 1 or 
2). Solving the sets of equations, we obtain finally fi 

and fi. In actual calculation, we set N = 15. The 
results are shown in Figs. 1-3. In these figures, the 
solid curves show fr , the dotted curves f2 and the fine 
curves fi for 0 = 54”. 

To check the approximation of the numerical cal- 
culation, we evaluate the relative error of the moment 
with the weight function 1. The results show that the 

01- I I I 
0 001 001 01 I 

r 

FIG. 5. Asymptotic value of the temperature for lb = 1. The 
chain line shows the value for r = 0. 

error is less than a few percent when l-2 0001 and 

0” < cos-1 lb < 72”. When I = 0, the error becomes, 
of course, comparable to the calculated main value. 

Typical distributions of the temperature* are shown 
in Fig. 4 for various values of I when Ib = 1. 
When I = 0.001, the conduction layer is clearly shown. 
The radiation layer is remarkable when the order of 
the value of r is less than 0.1. When I = 10, the 
conduction is dominant so that the temperature is 

almost flat. The asymptotic value of T, T,, are shown 
in Fig. 5 for lb = 1. In Section 3, it is shown that the 

asymptotic value does not change, if the conduction 
is very weak. We need, however, a very small value of 
I for the statement to be valid. Consequently, the 
radiation layer, which shows one of the main characters 

of radiative heat transfer, is remarkable when the order 
of the value of I is less than 0.1 even if the medium 
has the heat conductivity. 
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*In calculating T and a, we neglected the Et term in 
equation (9), since the term is less important in the present 
problem. The approximation shows the case that the beam 
temperature is much greater than the plate temperature. 

The curve for f = 0 is that calculated in [l]. 
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TRANSFERT DE CHALEUR STATIONNAIRE UNIDIMENSIONNEL 
DANS UN MILIEU PROPAGATEUR DU RAYONNEMENT 

R&sum&-On analyse le transfert de chaleur a travers un milieu gris dans un espace semi-infini limit6 par 
une plaque plane a temperature constante utilisant une approximation linearis% dans le cas od un 
rayonnement exterieur est impost a travers la plaque semi-transparente. On considbre que le champ de 
rayonnement est en &quilibre thermodynamique local et que le flux de chaleur est nul. Les rbultats 
montrent que la conductivitt n’affecte que peu la distribution de temperature qui est caracteristique du 
rayonnement except6 dans une fine couche adjacente a la plaque, lorsque l’ordre de grandeur du 

transfert thermique dfi a la conduction est inferieur a 0,l fois celui dO au rayonnement. 

STATIONARE EINDIMENSIONALE WARMEUBERTRAGUNG DURCH 
EIN STRAHLEND-LEITENDES MEDIUM 

Zusammenfassung-Warmetlbertragung durch ein graues Medium in einem halbunendlichen Raum, der 
durch eine flache Platte mit konstanter Temperatur begrenzt ist, wird durch eine linearisierende Nlherung 
mittels eines von a&en auf die halbdurchllssige Platte einfallenden Strahls analysiert. Es wird der Fall 
untersucht, dag das Strahlungsfeld im LTE und da13 der Warmeflul3 gleich Null ist. Die Ergebnisse 
zeigen, da13 die Leitfahigkeit die Temperaturverteilung wenig beeinflugt, die charakteristisch fur die 
Strahlung auDer in der Grenzschicht an der Platte ist, wenn die Grogenordnung der Warmetibertragung, 
die durch die Warmeleitung hervogerufen wird, weniger als 0,l mal derjenigen ist, die durch Strahlung 

hervorgerufen wird. 

CTAIJMOHAPHbIii OAHOMEPHbIfi TEI-IJIOI-IEPEHOC YEPE3 
I-IPOBO~R~YKI M3JIYYEHklE CPEAY 

AHHO~~IR - C Hcnonb3oBaHHehr BHHekHoro npH6nHXreHHB HccnenyercB TennonepeHoc Hepe3 cepyto 
CpeAy B nOJly6eCKOHe’iHOM npOCTpaHCTBe, OrpaHUYeHHOM IlJlOCKOH nBaCTUHOH C nOCTORHHOH 
retuneparypoti, KorBa Ha nonynpospareym nnacTnHy HanaraeTcK BHerUHnB (cBeToBo8) ny9. Pac- 
CMaTpHBaeTCR CJtyHaH, KOrAa IlOne HSSIy’ieHHR HaXOnHTCB B COCTOBHHH TepMOBHHaMHYeCKOrO 
paBHOBeCHK, a TetInOBO~ IIOTOK - HyJl’.?BOk. 

Pe3ynbTaTbI llOKa3bIBaK)T, 'IT0 llpOBOJViMOCTb OKaSblBaeT HC6OnbmOC BnWRHHe Ha paCIIpenene- 

HWC TeMllCpaTypbl, RBnRlo~C@Zfi XapaKTepKCTHKOk H3ny'ieHHn, 38 WCKnIOYeHWeM TOHKOrO CnOll, 

npmerakolqero KnnacTHHe,Kor~aBen~~HHanepeHocaTenna3ac~eTTennonpoBo~HocTw~ 0,l pass 

Meiibwe,yeh4 nepeHocaTenna 3acqeT H3nyHeHHa. 


